Characterizing Distributed Systems

Def'n (CDK):
A distsysis:
a set of autonomous computers

linked by a network



with software designed to produce an integrated
computing facility.



Criticisms;

Absent: Enslow's ideas of

no shared memory

no shared clock, thus

time intedeterminacy owing to unpredictable
(unbounded?) network delays



Criticisms,

LeLann's (?) ideathat we can never know
the entire current state.

entire old state is knowable, OR

partia current state is knowable,

but that's all. (cf. Helsenberg Uncertainty
Principle)



Concepts mentioned only
iImplicitly:

multiple threads of control (Enslow)

multiple resources, dynamically assignable (Enslow)



Concepts mentioned only
iImplicitly:

NO master-dave stuff! (Enslow)
(unless we can elect a new master)

transparency (Enslow)



Mentioned explicitly:

high-level control (Enslow)

co-operative autonomy (Enslow)



Key Characteristics.

(more accurately:

good things which may be (?)
mor e easlly obtained in a dist than
In a centralized world



Good things

resource sharing:
amen!
Openness.
good for you, but not essential to ddp

concurrency,

amost inevitable, unlesswe work at it
(coroutines)



Good things

scalability:

highly desirable, but not essential to adistsys



Good things
fault tolerance:

arises naturally

(Lelann's observation that the limit case of delayed
response is failed responder)

and good for you, but not essential to adistsys (?)



Good things

transparency:

amen once more.
Simplifies programming enormously and
facilitates scalability, fault tolerance, . . .



Examples of distsys:

workstations & servers, connected by aLAN
(unix net )



Examples

ATM network: ATMs, ATM mothers,

account database machine & hot standby of
same.

Security,
reliability &
scalability considered important



Resour ce Manager s -> Objects

What's a resour ce manager ?
just a process which mothers a resource
What’s a resour ce?
hardware resource e.g. printer, or
dataresource eg aflag or semaphore or file;

anything to which you might want to control
access



Controlling access -
“mothering”

you access the resource by communicating
with Its mothering process

the mother defines permitted operations
("set the flag",
"reset the flag",
"test the flag state”)



Mapping mother processes
INto objects

the mother defines permitted operations
which may be called methods.

mother is an instantiation of a definition
of code & data structures
which may be called a class IF carefully defined

Hence the mothering process becomes a kind
of object. (but not yet with inheritance or scope).



My bias:

objects are specialized processes

(active; independent threads of control)

not specialized data structures (passive, no
threads

of control)

For our next trick . . .



Resour ce M anager s become
Servers

Story so far:

Resource Mother Is

just a process which mothers aresource
(hardware e.g. printer, data eg a flag or semaphore)

you access the resource by communicating with
ItS mothering process



