
Characterizing Distributed Systems

z Def'n (CDK):

z A distsys is:

y a set of autonomous computers

y linked by a network

y with software designed to produce an integrated
computing facility.

Criticisms:

z Absent: Enslow's ideas of

y no shared memory

y no shared clock, thus
x time intedeterminacy owing to unpredictable

(unbounded?) network delays

Criticisms:

z LeLann's (?) idea that we can never know

the entire current state.

y entire old state is knowable, OR

y partial current state is knowable,

but that's all. (cf. Heisenberg Uncertainty
Principle)

Concepts mentioned only
implicitly:

z multiple threads of control (Enslow)

z multiple resources, dynamically assignable (Enslow)

Concepts mentioned only
implicitly:

z NO master-slave stuff! (Enslow)

(unless we can elect a new master)

z transparency (Enslow)

Mentioned explicitly:

z high-level control (Enslow)

z co-operative autonomy (Enslow)

Key Characteristics:

z (more accurately:

y good things which may be (?)

more easily obtained in a dist than
in a centralized world

Good things

z resource sharing:
y amen!

z openness:
y good for you, but not essential to ddp

z concurrency;
y almost inevitable, unless we work at it

(coroutines)

Good things

z scalability:

y highly desirable, but not essential to a distsys

Good things

z fault tolerance:

y arises naturally
x (Lelann's observation that the limit case of delayed

response is failed responder)

 and good for you, but not essential to a distsys (?)

Good things

z transparency:

y amen once more.

y Simplifies programming enormously and

y facilitates scalability, fault tolerance , . . .

Examples of distsys:

z workstations & servers, connected by a LAN
x (unix net)

Examples

z ATM network: ATMs, ATM mothers,

account database machine & hot standby of
same.

y security,

y reliability &

y scalability considered important

Resource Managers -> Objects

z What's a resource manager?
just a process which mothers a resource

z What’s a resource?
y hardware resource e.g. printer, or

y data resource eg a flag or semaphore or file ;

z anything to which you might want to control
access

Controlling access -
“mothering”

z you access the resource by communicating
with its mothering process

z the mother defines permitted operations
y ("set the flag",

y "reset the flag",

y "test the flag state")

Mapping mother processes
into objects

z the mother defines permitted operations
y which may be called methods.

z mother is an instantiation of a definition
y of code & data structures

y which may be called a class IF carefully defined

z Hence the mothering process becomes a kind
y of object. (but not yet with inheritance or scope).

My bias:

z objects are specialized processes

y (active; independent threads of control)

y not specialized data structures (passive, no
threads

y of control)

z For our next trick . . .

Resource Managers become
Servers

z Story so far:
z Resource Mother is

y just a process which mothers a resource
x (hardware e.g. printer, data eg a flag or semaphore)

y you access the resource by communicating with
its mothering process

